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Whether the neural mechanisms that underlie the processing of a second language in highly proficient
late bilinguals (L2 late learners) are similar or not to those that underlie the processing of the first
language (L1) is still an issue under debate. In this study, a group of late learners of Spanish whose native
language is English and a group of Spanish monolinguals were compared while they read sentences,
some of which contained syntactic violations. A brain complex network analysis approach was used to
assess the time-varying topological properties of the functional networks extracted from the electro-
encephalography (EEG) recording. Late L2 learners showed a lower degree of parallel information
transfer and a slower propagation between regions of the brain functional networks while processing
sentences containing a gender mismatch condition as compared with a standard sentence configuration.
In contrast, no such differences between these conditions were detected in the Spanish monolinguals.
This indicates that when a morphosyntactic language incongruence that does not exist in the native
language is presented in the second language, the neural activation pattern is configured differently in
highly proficient late bilinguals than in monolinguals.

& 2015 Published by Elsevier Ltd.
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1. Introduction

Previous research on late L2 acquisition measuring the elec-
trophysiological correlates of language processing using the event
related potential (ERP) technique do not display a consistent pic-
ture regarding whether similar or different neural patterns un-
derlie sentence processing in monolinguals and highly proficient
L2 learners (Bowden et al., 2013; Chen et al., 2007; Friederici et al.,
2002; Gillon Dowens et al., 2011; Gillon Dowens et al., 2010;
Hahne and Friederici, 2001; Hahne et al., 2006; Isel, 2007;
McLaughlin et al., 2010; Morgan-Short et al., 2012a, 2010, 2012b;
Mueller et al., 2005; Ojima et al., 2005; Osterhout et al., 2008;
Pakulak and Neville, 2011; Rossi et al., 2006; Steinhauer et al.,
2009; Tokowicz and MacWhinney, 2005; Weber-Fox and Neville,
1996). However, ERPs (and also spectral power estimations) only
reflect local activation of large groups of neurons, while it is
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thought that the physiological bases of information processing and
mental representation are provided by functional networks
(Bressler, 1995). In this sense, the ERP approach can be considered
a somewhat limited perspective in investigating the biological
bases of language acquisition, as it provides only measurements of
local activation but not critical information about the relations
established between different areas and the networks that emerge
from these. Thus, detection of a similar ERP pattern across two
groups of participants or two conditions does not necessarily
mean similar neural substrates or that equivalent cognitive pro-
cessing is taking place.

An alternative to ERPs, in addressing whether the neural me-
chanisms that subserve the processing of the first language (L1)
are the same or different from those underlying the L2, is to use
brain complex network analysis. This approach, based on a
mathematical framework called graph theory, considers the brain
as a complex system or network: the brain is modeled as a graph
whose nodes (or vertices) represent defined regions, with the links
(or edges) between them representing functional (or structural)
90
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connections (Bassett and Gazzaniga, 2011; Bullmore and Sporns,
2009, 2012; Sporns, 2013; Stam and Reijneveld, 2007). The capa-
city of theoretical complex analysis to explain the brain's basic
organization relies strongly on how much the estimated network
represents the underlying neurobiological system. In this sense, it
seems more justified to use this type of analysis for anatomical
(structural) networks, which are thought to be more invariant over
short time scales. However, as the core question of the emergence
of coherent behavior and cognition is presumed to be im-
plemented by the dynamic links established between different
areas, graph analysis has been here extrapolated to brain func-
tional connectivity, an application now possible due to the rapid
methodological development of new analytical tools (for electro-
physiology see for example Greenblatt et al. (2012); Sakkalis
(2011)). In functional connectivity, generally, the ‘links’ are statis-
tical measures of temporal dependence between indirect mea-
sures of neuronal activities, an approach which constitutes a dif-
ferent conceptualisation of connection (Friston, 2011). Caution in
the implementation and interpretation of graph analysis is
therefore necessary at the functional level (Sporns, 2014).

At the brain functional connectivity level it could be said that
there are two kinds of modalities: (i) voxel-based modalities such
as functional magnetic resonance imaging (fMRI) or positron
emission tomography (PET) with nodes in the measurement space
and (ii) sensor-based modalities such as EEG, magnetoencepha-
lography (MEG) and near-infrared spectroscopy (NIRS) in which
the nodes are the sensors (De Vico Fallani et al., 2014). The former
are highly informative but still have important constraints, with
non-trivial factors such as brain parcellation definition (atlas) or
number of nodes impacting on the results and influencing the
ability to compare across studies or techniques. On the other hand,
sensor-based modalities have the problem of volume conduction
and we therefore have a choice between ignoring this effect (re-
sulting in a biased non-neural dependence) or addressing it. Two
possible ways to address the issue are to use cortical source re-
constructions or to choose a functional connectivity measure that
attenuates volume conduction effects (De Vico Fallani et al., 2014).

There is a wide range of complex network measurements (to-
pological parameters) reflecting different properties of the net-
works (Rubinov and Sporns, 2010). For example, measures of in-
tegration characterize the ability to rapidly combine specialized
information from distributed regions by estimating the ease with
which the regions communicate. They are commonly based on the
concept of path, which is a sequence of distinct nodes and links,
representing sequences of statistical associations in the case of
functional networks (Rubinov and Sporns, 2010). Two common
measures of integration are path length (L) and global efficiency
(Eglob). L is the average shortest distance (path) between all pairs of
nodes in the network (Watts and Strogatz, 1998) while Eglob is the
average inverse shortest path length (Latora and Marchiori, 2001).
On other hand, there are also measures of node centrality, which
assess the importance of individual nodes. Higher centrality is
associated to those nodes that act as bridges between the other
nodes (Bassettt et al., 2006; Dall’Asta et al., 2006; Freeman, 1977;
Honey et al., 2007). The importance (centrality) is sometimes
based on the idea that those nodes that participate in many short
paths within a network have an important control of information
flow (Freeman, 1978). For instance, the betweenness centrality
measure consists in the fraction of all shortest paths in the net-
work that contain a given node (Rubinov and Sporns, 2010). Nodes
with high values of betweenness centrality participate in a large
number of shortest paths.

Although there are different valid methodological decisions
about what is considered to be a node and what is considered to
be a link, essentially, the definition of these topological measures
is invariable and independent of the network modeled. However,
Please cite this article as: Pérez, A., et al., Complex brain network pro
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it is essential to interpret the results according to the nature of the
signals analyzed. As electrophysiological signals indirectly reflect
the activity fluctuations of underlying neuronal groups, once the
conduction volume effects are controlled in an electro-
physiological network reconstruction, it is then feasible to assume
the electrodes to be unique/independent nodes that interrelate
mutually and define a consistent network. In sum, all network
topological measures retain their classical interpretations (Bull-
more and Sporns, 2009; Iturria-Medina, 2013; Rubinov and
Sporns, 2010), with the particularity that these would now re-
present potential neuronal interactions.

In the context of cognitive neuroscience, these measures have a
tentative physiological interpretation. The average and distribu-
tion of the L determines the “compactness” of the neural network,
with shorter path lengths meaning that information can be pro-
pagated faster between regions of the brain. The Eglob reflects the
degree of parallel information transfer; here a high global effi-
ciency value may indicate higher parallel information transfer in
the brain system (Iturria-Medina, 2013). In the case of the be-
tweenness centrality measure, nodes with higher values are pre-
sumed to have a higher relative importance in the functioning of
the whole brain network defined. In general, it could be said that
these measures capture the global management of information
flow and the relative performance of particular areas. Complex
network analysis thus enriches comprehension of brain mechan-
isms in general (Rubinov and Sporns, 2010), shifting the research
perspective from ‘foci’ to ‘network’ (van Diessen et al., 2013). This
analysis can therefore be valuable in ascertaining whether a par-
ticular neural pattern of activation in L2 behaves in a native-like
way or not. In fact, in studies where other approaches do not show
differences between the neurophysiological patterns subserving
cognitive performance in L1 and L2 and the hypothesis of similar
neural substrates for both languages is therefore posited, complex
network analysis can provide key information to support or to
question this assumption.

In this study, we specifically assess for the time-varying topo-
logical properties of functional networks as extracted from the
EEG data (Chavez et al., 2010; Valencia et al., 2008). This method
involves studying the time–frequency dependencies of the func-
tional brain networks, thus offering topological parameters which
describe the brain network configuration at different time points.
Similar to Chavez et al. (2010), the nodes are represented by the
recording sites (electrodes) and the links between them by the
Phase-Locking Value (PLV). The PLV method (and synchrony
methods in general) measure the relative stability of the difference
of phases between two signals, here EEG signals, and then capture
when neuronal groups that oscillate in specific frequencies enter
into precise phase-locking over a limited period of time (Le Van
Quyen et al., 2001). Neural synchrony is involved in the large-scale
transient integration of numerous functional areas widely dis-
tributed over the brain which is required for normal cognitive
operations (Varela et al., 2001). In other words, PLV (and long-
range synchrony methods in general) allow extraction of the
functional network connectivity patterns from EEG, as it is as-
sumed that coherent electrophysiological activity can span the
multiple, spatially distinct brain regions that make up a functional
network (Fries, 2005; Singer, 1999).

In a previous EEG study of late (adult) L2 acquisition, highly
proficient L2 learners of Spanish (native English speakers) showed
both different and similar ERP patterns to monolingual native
Spanish speakers when they performed morphosyntactic agree-
ment tasks (Gillon Dowens et al., 2010). Interestingly, there was a
similar pattern between native speakers and the L2 group when
processing gender disagreement between article and noun at the
beginning of sentences visually presented word-by-word. Mor-
phosyntactic gender agreement, however, is an L2 (Spanish) trait
perties in late L2 learners and native speakers. Neuropsychologia
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not present in the L1 (English) of these participants, so no transfer
of this feature to the L2 is possible, suggesting the plausibility of
differential underlying neural processes in both groups which
were not captured by the ERP technique.

In the present study, by using data from Gillon Dowens et al.’s
(2010) study, we will concentrate on this local gender disagree-
ment between article and noun. As the performance of L2 late
learners in the gender agreement task showed more variability
than that of native speakers, we selected a subset of participants
from the two groups that were matched in performance (error
rates) in the task. This means that the equivalence in the profi-
ciency of both groups will be guaranteed not only by taking into
account similarity in the off-line tests but also equivalent beha-
vioral performance in the on-line task. This is important, since the
question of L2 proficiency is a key factor to be taken into account
when questions of native-like processing are addressed (Kotz,
2009; Mueller et al., 2005) and if this is not controlled for, results
can be quite different (Hahne, 2001; Weber-Fox and Neville, 1996).

Summarizing, here we provide a different perspective to stu-
dies of late L2 acquisition which emphasize focal brain activity (for
example ERPs), by employing a complex network analysis ap-
proach. Specifically, we assess for similarities and differences in
the time-varying topological properties of the functional net-
works, as extracted from EEG data (Chavez et al., 2010; De Vico
Fallani et al., 2008; Dimitriadis et al., 2010; Valencia et al., 2008),
associated to the processing of gender mismatch between article
and noun at the beginning of Spanish sentences in two groups of
participants: a Spanish monolingual group and a group of late
learners of Spanish whose native language is English. We expect
that this complex network approach will provide new information
about language organization and morphosyntactic processing in
late L2 acquisition, as manifested by EEG functional networks, in
terms of functional cooperation and interaction. Specifically, we
predict that possible differences in the topological parameters will
be reflected in theta band (4–7 Hz) because this specific range of
frequencies is consistently modulated in relation to processing of
correct and syntactically anomalous sentences (Bastiaansen et al.,
2002; Hald et al., 2006; Pérez et al., 2012). We also predict that for
the late learners when the processing of a mismatching word
takes place, in an effort to solve the inconsistency, less parallel
information transfer in the brain system will occur (i.e. smaller
Eglob for the mismatch condition) and the neural networks asso-
ciated will have longer paths (i.e. smaller L for the Agreement
condition) as compared to when a typical sentence is processed.
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2. Methods

2.1. Participants

Event-related potential data of the present participants, plus
data from another 22 participants (11 more in each group) were
previously published (Gillon Dowens et al., 2010). Our subsample
was selected to achieve a similar percentage of correct responses
between groups also in the online tasks, to guarantee as far as
possible real equivalence in the proficiency of both groups.

2.1.1. Late bilingual group
This was composed of 12 native speakers of English who were

late learners of Spanish (mean age¼47.4 years, std¼7.8, range 35–
60, 10 female). The participants were interviewed by a trained
native speaker of English and a trained native speaker of Spanish
to evaluate their comprehension and fluency in both languages. All
were judged highly proficient in speaking, reading and under-
standing Spanish. They filled in a self-rating questionnaire about
their language background: the age of acquisition (AoA) of Spanish
Please cite this article as: Pérez, A., et al., Complex brain network pro
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and English, the time spent in each language environment, their
daily use of Spanish and English (in percentage) and their profi-
ciency in both languages (on a scale from 1-very poor level to
5-perfectly fluent) for speaking, listening, reading and writing. All
of them started to learn Spanish after the age of 20 and had at
least 12 years of immersion in a Spanish environment (range: 12–
33, mean: 22.1). The results indicated that the participants used
Spanish on a daily basis and rated their competence in Spanish as
being good to perfect (the average for speaking was 4, listening 4,
reading 5, and writing 3). After the experiment, they also filled in a
grammar test of 90 questions on noun–adjective agreement that
included the experimental items. The results from this confirmed
that off-line, the participants were able to choose the correct form
of the adjective in terms of gender and number agreement, at 98%
(SD¼0.82) accuracy.

2.1.2. Spanish native-speaker group
This was composed of 12 native speakers of Spanish (mean

age¼ 45.8 years, std¼ 7.5, range 35–60, 2 females). After the ex-
periment, they also filled in the short grammar test. The results
confirmed that off-line, the participants were able to choose the
correct form of the adjective at 99% (SD¼0.58) accuracy.

The participants in both groups were matched in terms of
educational background and socioeconomic status. All participants
were right-handed, as assessed by the Edinburgh Handedness
Inventory (Oldfield, 1971), with normal or corrected-to-normal
vision and no history of neurological or psychiatric impairment
according to self-report.

2.2. Materials
The experimental materials related to the data used here con-

sisted in a list of 80 sentences: 40 correct sentences and 40 sen-
tences showing article–noun gender disagreement at the begin-
ning. See examples below
(1)
pert
Agreement: El suelo está plano y bien acabado.
(Themasc.-sing. floormasc.-sing is flat and well finished.)
(2)
 Gender Disagreement: La suelo está plano y bien acabado.
(Thefem.-sing floormasc.-sing is flat and well finished.)
Basically, conditions consisted in the same sentences but
combining different gender forms (agreeing or disagreeing),
making the conditions equivalent in terms of mean length and
frequency of the words. Each participant saw each sentence (from
the original list of 120) in only one form but each sentence form
occurred several times across subjects. All the target items were
medium to high frequency words (mean¼1.15, SD¼0.5), con-
tained between four and nine letters (mean¼5.65, SD¼1.03) and
between two and four syllables (mean¼2.3, SD¼0.48) (Duchon
et al., 2013).

Experimental material also shown to participants but the as-
sociated data of which was not used here included 120 sentences
that manipulated the agreement relationship in the middle of the
sentence, 40 sentences that manipulated number agreement at the
beginning of the sentence and 80 well-formed sentences that in-
cluded nouns with opaque or irregular gender and adjectives with
neuter gender to avoid strategies based on purely orthographic
features (for a description of the full set of materials see Barber
and Carreiras (2005); Gillon Dowens et al. (2010)).

2.3. Procedure

Participants were seated comfortably in a darkened sound-at-
tenuated chamber with a high-resolution monitor positioned at
eye level 80–90 cm in front of them. The sentences were visually
presented word by word using Presentation software. The EEG was
ies in late L2 learners and native speakers. Neuropsychologia
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simultaneously recorded with a 64-channel BrainAmp system
(Brain Products GmbH). All the words were displayed in light-gray
lowercase Arial 36 against a black background. Participants per-
formed a grammatical decision task. They were instructed to press
one of two keys (L and S) on a keyboard to indicate whether the
sentence was grammatically correct or not. For half of the parti-
cipants, the right key (L) was used to signal the “yes” response and
the left key (S) was assigned to the “no” response. For the re-
maining participants, the order was reversed.

The sequence of events in each trial is described as follows:
First, a fixation point (n) appeared in the center of the screen and
remained there for 700 ms. This fixation point was followed by a
blank screen interval of 300 ms, and then the sentence was dis-
played word by word. Each word appeared for 300 ms and was
followed by a 300-ms blank interval. At the end of the sentence, a
question mark cue to respond was presented and remained there
up to a maximum of 2000 ms or until the participant’s response.
The inter-trial interval varied randomly between 1000 and
1500 ms. Participants were asked to avoid eye movements and
blinks if possible during the interval starting from the fixation
point until response was given and were instructed to favor ac-
curacy over speed in their responses. A practice session of five
trials was given. The sentences were presented in three blocks of
approximately 14 min each, with two short rest breaks. The whole
experiment lasted approximately 90 min, including set-up time.

2.4. EEG pre-processing

Fig. 1 Schematically illustrates the basic steps of the time-
varying brain complex network approach, similar to that proposed
by Chavez et al. (2010).

Electrophysiological data was acquired using 58 Ag/AgCl elec-
trodes (Fig. 1, panel a) that were mounted in an elastic cap (10–10
system; ElectroCap International, Eaton, OH). Linked earlobes were
used as reference. Eye movements and blinks were monitored
with six additional electrodes providing bipolar recordings of the
horizontal and vertical electrooculogram (EOG). Interelectrode
impedances were kept below 10 kΩ. Data were acquired at a
sampling rate of 250 Hz. All the analyses were performed using
MATLAB (The MathWorks Inc.). EEG signal was processed using
EEGLAB toolbox (Delorme and Makeig, 2004). Signal was off-line
Fig. 1. General schema for the extraction of the time-varying brain networks: (a) flat r
(b) time series signals that after epoching are used to estimate the PLV in each condition;
at each point of the time–frequency space which can be represented as an undirected
connections (c2 left). Complex network analyses are then performed allowing (d) a tim

Please cite this article as: Pérez, A., et al., Complex brain network pro
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re-referenced to the average activity of the two mastoids. A high-
pass filter of 1 Hz was applied before performing a independent
component analysis (ICA) algorithm type Biased Infomax (Makeig
et al., 1997). Components were visually inspected searching for
those accounting for ocular movements in order to remove them
from data. EOG sensors and frontal electrodes Fp1, Fp2 and Fpz
were then discarded as they were recording mainly ocular
movement activity. The EEG data was then segmented into
3000 ms epochs, including a 800 ms baseline (Fig. 1, panel b). Note
that all steps until here are common data-processing steps to
obtain ERPs.

2.5. Complex network analysis

The next step is estimation of the functional brain networks.
Functional links between all pairs of sensors were defined via the
PLV (Lachaux et al., 1999) using a custom-written program. To
compute the PLV values, we used a complex Morlet wavelet
function t f A t i f t( , ) exp( /2 ) exp( 2 ).t0

2 2
0ω σ π= − × Normalization

factor A was set to A ( )t
1/2σ π= − . m f/2t 0σ π= , m is a constant that

defines the compromise between time and frequency resolution,
and f0 is the center frequency of the wavelet. Hence, in the time
domain, its real and imaginary parts are a cosine and a sine, re-
spectively, of which the amplitude envelope is a Gaussian with a
standard deviation of tσ . In the frequency domain, the Morlet
wavelet is also a Gaussian with a standard deviation fσ given
m f / f0 σ= . Here, m was chosen to be 7. By means of this complex

wavelet transform, an instantaneous phase t f( , )i
trialϕ is obtained

for each frequency component of signals i M1, ,= … at each re-
petition of the stimulus (trial). The PLV between any pair of signals
i k( , ) is inversely related to the variability of phase differences
across trials

t f
N

PLV ( , )
1

exp ,i k

N
j t f t f

,
trials trial 1

( ( , ) ( , ))i k

trials
trial trial∑= ϕ ϕ

=

−

where Ntrials is the total number of trials. If the phase difference
varies little across trials, its distribution is concentrated around a
preferred value and PLV ∼1. In contrast, under the null hypothesis
of a uniformity of phase distribution, PLV values are close to zero
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epresentation of the 55 electrode positions from which EEG activity was recorded;
(c1) time–frequency estimation of the PLV; (c2) connectivity matrices are extracted
weighted adjacency matrix (c2 right) or as scalp topography with lines denoting
e–frequency representation for each topological parameter estimated.
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(Chavez et al., 2010).
Briefly: in each trial, for any electrode pair PLV was computed.

PLV assesses for the phase difference between two signals and its
computation was based on the phase information obtained from
the wavelet transform. This was done specifically in 40 ms steps
and a frequency range from 3 to 30 Hz. PLV results are collapsed
across trials of each condition (a parallel to the grand average in
ERPs). PLV range is from 0 to 1, indicating random or perfect
synchronization respectively. As the PLV is an index of long-dis-
tance neural synchrony, the final result is a time–frequency re-
presentation of the functional networks (Fig. 1, panel c1). Note that
the commonly-presented time–frequency plots of the PLV values
as in Fig. 1, panel c1, consist in an averaging of all electrode-pair
data. This means that to each time–frequency point (represented
by a black square dot in the figure) there corresponds a functional
network.

PLV measures were normalized relative to a baseline, in a
procedure commonly used in the event-related spectral pertur-
bation (ERSP) (Makeig et al., 2004). Here, this was done specifically
by using the 200 ms baseline before the onset of the target word.
The normalized signal (SN) was obtained by subtracting the aver-
age activity of the baseline (m) from the raw signal (S) and then
dividing by the standard deviation of the baseline (s), in a fre-
quency-by-frequency manner: SN¼(S�m)/s.

Every time–frequency-specific functional brain network de-
rived from PLV data serves as a matrix of coupling coefficients that
link electrode nodes. This connectivity matrix (adjacency matrix)
is represented on the right of Fig. 1, panel c2 but can also be de-
picted, in the EEG field, by a scalp topography graph showing the
electrodes and lines between them representing the links (see
Fig. 1, panel c2, the left figure), these being equivalent re-
presentations of the same data.

Then, before proceeding with the calculation of the graph
measures, the associated connectivity backbones were estimated
(Hagmann et al., 2008) over the matrix (55�55) composed of
undirected and weighted edges consistent in the normalized PLV
values. This step is included because graph measures on these
networks are influenced by average connection strength, the range
of connectivity values and by the noisy and spurious connections
contained in these weighted networks (Tewarie et al., 2014). In
other words, it is performed in order to reduce the number of
spurious connections present in each normalized PLV network
(Stam et al., 2014). This procedure removed from the individual
(time–frequency-specific) functional graphs those electrode–elec-
trode links with a low degree of evidence supporting the existence
of a functional interrelation between the underlying neuronal
groups. Ideally, this retains in each final functional graph only the
pair-wise links associated to direct functional interrelations.
Briefly, the backbone estimation procedure works as follows
(Hagmann et al., 2008): a) the maximum spanning tree of the PLV
graph is extracted, i.e. the acyclic subset of links that connects all
the nodes in the studied graph and for which the total PLV weight
is maximized, and then b) for each node, additional links are ad-
ded in order of their weight until the node is “linked” to at least
other 4 nodes.

Next, complex network analyses were performed on each in-
dividual (time–frequency-specific) backbone PLV matrix.

The topological parameter L for a given network G was defined
as the mean of geodesic lengths dij over all pairs of nodes i and j,
according to the following formula:

L
n n

d
1

( 1) i j G

i j

ij
,
∑=

− ∈
≠

In this study, we assumed that the physical length of an arc
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connecting nodes i and j is inversely proportional to the strength
of the analyzed connection (Iturria-Medina et al., 2008), i.e. lij
¼1/wij. Thus, the shortest path length dij is finally computed as the
smallest sum of the arc lengths throughout all the possible paths
from node i to node j. Note that for the particular case of un-
weighted graphs, lij¼1 for all arcs and the geodesic length dij re-
duces to the minimum number of arcs traversed to get from i to j.

The Eglob parameter is then defined as (Watts and Strogatz,
1998)

E
n n d

1
( 1)

1

i j G

i j

ij
glob

,
∑=

− ∈
≠

The betweenness centrality is mathematically defined as fol-
lows: for weighted networks, if kj

wσ is the number of paths from
node k to node j, and i( )kj

wσ is the number of these paths passing
through node i, the weighted betweenness centrality of i is (Dal-
l’Asta et al., 2006)

b
i( )

i
w

k j G

k j i

kj
w

kj
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∑ σ
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=

∈
≠ ≠

Finally, what we obtained is a time–frequency representation
of these topological measures (Fig. 1, panel d) for each subject and
condition, to be used for statistical comparisons.

Note that, as the betweenness centrality measure describes
each node performance across the network, it is not possible to
represent it as in Fig. 1, panel d, where unitary parameters are
obtained from the entire network. Therefore, we represent this
measure using scalp topographical maps referring to a specific
time–frequency point (see Fig. 2, panel (c) and (f)).

2.6. Statistical analysis

Statistical analysis assessed for differences in the time–fre-
quency data of the global topological parameters. A nonparametric
bootstrap-based t-test method from the Resampling Statistical
Toolkit was used. This package is part of EEGLAB software and
contains a set of functions for inferential statistics using resam-
pling methods (available at http://sccn.ucsd.edu/repos/software/
eeglab/functions/statistics/). The number of surrogate data copies
to use in the bootstrap mode estimation was set to 10,000. An FDR
correction for multiple comparisons (Efron, 2004) (at q¼0.05) was
performed. Only clusters of significant fdr-corrected p-values
composed of more than 2 time–frequency points were considered
to reflect significant differences between conditions.
3. Results

3.1. Behavioral results

In order to evaluate if the correct responses to the different
morphosyntactic conditions are different or not between the two
groups, a balanced two-way ANOVA was performed. Results
showed similar behavioral performance (all p40.1), guaranteeing
that highly proficient late L2 learners performed in the on-line
task similarly to the Spanish monolinguals (Table 1).

3.2. Complex network analysis results

3.2.1. Measures of integration (Eglob and L)
A first analysis assessed for differences between groups in the

Agreement ‘baseline’ condition. No statistically significant differ-
ences emerged in the topological parameters Eglob and L. This
perties in late L2 learners and native speakers. Neuropsychologia
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Fig. 2. Mean differences between the Agreement and Gender DiQ3 sagreement conditions for each group related to three topological features. The left column corresponds to
the Late Bilingual group and the right column to the Spanish Native speaker group. Time range is from 40 ms to 880 ms after the target (noun word) onset. The color scale
represents the mean difference, i.e. the subtraction of the topological feature average corresponding to the Agreement condition minus the average corresponding to the
Gender Disagreement condition. Red color indicates higher values for the Agreement condition while blue indicates higher values for the Disagreement condition. Black
contour lines outline time frequency clusters that show statistically significant differences (pFDR-corro0.05). (Panels a,b) Time–frequency maps of global efficiency mean
differences. (Panels c,d) Time–frequency maps of characteristic path length. (Panels e,f) Scalp topographical distribution of the betweenness centrality corresponding to the
4 Hz activities at four different time points (640, 720, 800 and 880 ms). (For the interpretation of references to color in this figure legend, the reader is referred to the web
version of this article.)

Table 1
Mean percentage and standard deviation (SD) values of correct responses for each
group in the experimental conditions.

Late bilingual group Spanish native-speaker group

Agreement 94.6 (3.5) 94.6 (3.2)
Gender Disagreement 93.1 (3.1) 95.6 (1.8)
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indicates that both groups have similar patterns, in terms of in-
formation flow, when reading a correct sentence.

A second analysis assessed for differences between groups in
the Gender Disagreement condition. Statistically significant dif-
ferences (pFDR-corro0.05) emerged in Eglob at 8 Hz in a time win-
dow from 600 to 760 ms and in L at the same 8 Hz frequency from
680 to 760 ms after the target onset. These consisted in lower
global efficiency and shorter path lengths for the Late Bilingual
group as compared to the Spanish Native-speaker group. This
indicates differences between these groups in the patterns of
information flow when processing sentences in the Gender
Disagreement condition.

We then compared the Agreement and Gender Disagreement
conditions inside each group. Fig. 2 (panels a, b, d and e) shows the
time–frequency representation of the mean differences between
conditions (Agreement minus Gender Disagreement) for the to-
pological features Eglob and L in each group. There are differences
Please cite this article as: Pérez, A., et al., Complex brain network pro
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between conditions in the topological parameters for the Late
Bilingual group but not for the Spanish Native-speaker group,
where the patterns are similar.

For the Late Bilingual group, in the case of Eglob (Fig. 2 panel a),
the significant differences consisted in a lower global efficiency for
the functional networks corresponding to the Gender Disagree-
ment as compared to the Agreement condition. This is denoted by
the positive (red) values in the 4 Hz frequency, for a time window
from 640 to 880 ms. In the case of the L measure (Fig. 2 panel b),
the negative (blue) values in the clusters containing significant
differences denote longer path lengths (i.e. less compactness,
slower propagation) for the functional networks related to the
Gender Disagreement condition. This pattern of results is not
surprising, since Eglob and L are two related measures and longer
path lengths are associated with decreased global efficiency. The
main differences in L values are in the frequency of 4 Hz (time
window from 580 to 880 ms) but also in 3 Hz, 16 Hz (440–520 ms)
and a frequency range from 22 to 24 Hz (380 ms).

3.2.2. Node centrality (Betweenness centrality)
We assessed for differences in the betweenness centrality

measure only in those comparisons and time–frequency points
that were significantly different in the measures of integration.

Betweenness centrality of all nodes was compared between
groups in the Gender Disagreement condition at 8 Hz at time
points corresponding to 680, 720 and 760 ms. A two-sample t-test
perties in late L2 learners and native speakers. Neuropsychologia
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showed that the measures were significantly different (po0.05)
between groups at electrodes CZ, TCP1, T6 (more indispensable for
the Late Bilingual group) and O2, C5A (more indispensable for
Spanish native speakers).

Betweenness centrality of all nodes was also compared be-
tween the Agreement and Gender Disagreement conditions for the
Late Bilingual group, at 4 Hz frequency at the time points 640, 720,
800 and 880 ms. A paired-sample t-test showed significant dif-
ferences between conditions (po0.05) at electrodes C1, CZ, CZA,
T3L, C3A (more indispensable for the Gender Disagreement con-
dition) and P2P, P1 (more indispensable for the Agreement
condition).

Fig. 2 panel (e) and (f) shows for both groups the scalp re-
presentation of the relative differences between conditions
(Agreement minus Gender Disagreement) in the betweenness
centrality measure. This illustration is similar to the ERP compo-
nent topography but with the colors representing centrality units
instead of voltage. It allows a visual inspection that suggests a
different direction in the relative change effects and in the topo-
graphical distribution.
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4. Discussion

The present complex network analysis study aimed at assessing
the time-varying topological properties of functional networks as
extracted from EEG recording (Chavez et al., 2010; De Vico Fallani
et al., 2008; Dimitriadis et al., 2010; Valencia et al., 2008) in highly
proficient second language learners and native speakers. Specifi-
cally, we compared English highly proficient late L2 learners of
Spanish and Spanish native monolinguals when performing a
morphosyntactic task involving grammatical gender, a gramma-
tical category which is not present in English. The topological
parameters Eglob (global efficiency), L (characteristic path length),
and also the betweenness centrality index were estimated in an
attempt to describe the dynamics of functional cooperation and
interaction of brain areas processing a late-acquired L2 trait not
present in L1, as compared to an agreement (correct sentence)
condition.

The results obtained here indicate that in terms of the global
management of information flow, (i) the pattern is similar in late
bilinguals and monolinguals when reading a correct sentence (and
searching for possible incongruencies), (ii) there are different
patterns between late L2 learners and monolinguals when reading
a sentence which is grammatically incorrect due to mismatch in a
morphosyntactic feature (syntactic gender) not present in the first
language, (iii) for the late L2 learners there are differences be-
tween the processing of the correct and the incorrect sentences,
(iv) for the monolinguals there are no differences in the processing
of the correct and the incorrect sentences. In addition, the indis-
pensability of each node (expressed in the betweenness centrality
measure) is dissimilar for the late L2 learners and monolinguals.
Results (i) and (ii) are from direct statistical comparison between
the groups, which is essential when making statements about
different patterns in the time-varying topological properties of
both groups. The fact that the pattern is the same in both groups in
the correct sentence condition is in line with the idea that native-
like processing can be attained (Bowden et al., 2013; Ullman,
2012). However, there are differences between the groups in
processing of the morphosyntactic violation. Curiously, these dif-
ferences are present in the 8 Hz frequency, which belongs to the
alpha frequency band, widely associated to attentional processes
(Brunia, 1993; Foxe et al., 1998; Klimesch et al., 1998; Lopes da
Silva, 1991; Steriade et al., 1990) and it has been suggested that late
L2 learners could devote more attentional resources than L1
speakers when trying to fit a mismatching word into a sentence
Please cite this article as: Pérez, A., et al., Complex brain network pro
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context (Newman et al., 2012).
Furthermore, for the late L2 learners processing the gender

mismatch condition, we found a lower degree of parallel in-
formation transfer (reflected in the smaller Eglob) and slower
propagation between regions (as manifested in the longer L) of the
brain functional networks, as compared with processing standard
sentences. This would suggest that to solve the grammatical in-
consistency, the otherwise more graph-efficient and compact
neural configuration that is evident when processing typical sen-
tences changes to a state in which the neural information is ex-
changed between more broadly distributed regions. Interestingly,
4 Hz belongs to the theta frequency band, which has been sug-
gested in power spectral studies to reflect the retrieval of lexical-
semantic information (Bastiaansen et al., 2008; Davidson and In-
defrey, 2007), as well as verbal working memory load (Bastiaansen
et al., 2002). Thus, it could be that the findings here indicate dif-
ficulties in connecting the currently processed (mismatching)
noun to the (contextual) information that is still active in working
memory (Bastiaansen et al., 2002; Hald et al., 2006). In addition,
due to the parallel of the effects here reported with the timing of
the well-documented P600 component, we could speculate that
we obtained differences at these specific time points because the
differential network configuration is linked, as is the P600 com-
ponent, to controlled (conscious) processing, syntactic integration
or structural reanalysis (Friederici and Kotz, 2003; Hahne and
Friederici, 1999; Phillips et al., 2005). However, further validation
will be needed before positing these claims. We also found dif-
ferences in the beta frequency band, which has been described in
power spectral studies as reflecting effects in processes elicited by
syntactically incorrect sentences as compared to correct ones
(Bastiaansen et al., 2010). Thus, it is possible that the different
information flow here reflected in the beta band could be indexing
difficulties in syntactic integration processes.

For the Spanish native speaker group, there is no evidence of
differences in the parallel transfer of information and compactness
of the functional networks between processing of standard sen-
tences and sentences containing a grammatical gender-mis-
matching word. Although this result apparently contrasts with the
LAN and P600 effects observed for this group in the ERP study
(Gillon Dowens et al., 2010), the differences can be explained by
the fundamentally different mathematical underpinnings of both
approaches. In standard ERP analysis, epoch averaging of the time
series filters out most of the oscillatory activity due to differences
in latency from one trial to another, retaining only those activities
that are phase-locked to the event. In the present study, complex
network analysis was performed using a method that emphasizes
the spectral decomposition of single-trial event-related EEG
epochs, in order to examine event-related changes in the phase of
oscillations at specific frequencies. In other words, complex net-
work analysis was carried out on ‘induced’ activity which is poorly
represented or completely absent in the time domain features of
‘evoked’ ERPs (Makeig, 1993; Makeig et al., 2004).

A speculative but interesting idea that could be addressed in
further studies is that up to some point in development, native
readers could possibly show differential complex brain networks
properties associated to the processing of correct and incorrect
sentences (equivalent patterns to the ones found here in late L2
learners) but then, after years of practice, the brain system to
detect language anomalies is optimized in such a way that it can
perform the same in both cases (typical or anomalous) without
this having important implications in the management of in-
formation flow. Another avenue to explore in further studies could
be the temporal network approach. This promising new perspec-
tive in neural network data analysis (Pan and Saramaki, 2011; Tang
et al., 2010) takes into account that the emergence of a unified
neural process is mediated by the continuous formation and
perties in late L2 learners and native speakers. Neuropsychologia

http://dx.doi.org/10.1016/j.neuropsychologia.2015.01.021
http://dx.doi.org/10.1016/j.neuropsychologia.2015.01.021
http://dx.doi.org/10.1016/j.neuropsychologia.2015.01.021


Q4

Q5

Q6

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

A. Pérez et al. / Neuropsychologia ∎ (∎∎∎∎) ∎∎∎–∎∎∎8
destruction of functional links over time. Considering the timing of
connections and their correlations could provide additional in-
formation about network dynamics (see Holme and Saramaki
(2012) for a review).

The fact that the effects observed in the present analysis are
mostly limited to single frequency bins seems to be related to inter-
individual differences and the reduced sample size. This means that
the frequency peak for synchronization within the different bands
varies across subjects (Doppelmayr et al., 1998). Individual differ-
ences in brain dynamics could be exacerbated here due to age-re-
lated factors (Vysata et al., 2012) (i.e. age range of the participants). In
the specific case of the theta band, averaging would cause interac-
tions with the adjacent alpha frequency band (Klimesch et al., 1998),
which typically shows a synchronization pattern opposite to the one
in theta band. Further studies which focus a priori on specific fre-
quency bands could benefit by adjusting frequency bands in-
dividually (Pérez et al., 2009; Thut et al., 2006)

One possible limitation of this study is that the present analysis
was performed on EEG data in sensor space, which contains some
inherent spurious correlation because volume conduction causes
the signal at each sensor to be a mixture of blurred activity from
different inner cortical sources. Although this caveat does not af-
fect the characterization of the global network topology, accurate
inferences about anatomical locations need a source reconstruc-
tion of the activity in the cortex (Chavez et al., 2010). Therefore,
future studies using cortical source reconstructions would be de-
sirable (De Vico Fallani et al., 2010; Weisz et al., 2014). Another
limitation refers to the fact that the groups are not matched in the
distribution of males/females, which could be a confounding fac-
tor, since sex differences have been reported in several neuro-
cognitive aspects of language (Ullman et al., 2008). However, the
ERP data analysis on the original data set (Gillon Dowens et al.,
2010) revealed no significant differences between males and fe-
males relevant for the present experiment design.

To summarize, the present study showed differences in the
network dynamics that subserve morphosyntactic processing in
highly proficient late L2 learners and native speakers, providing
new insights into questions previously addressed by analyzing
focal brain activity (Bowden et al., 2013; Foucart and Frenck-
Mestre, 2011; Gillon Dowens et al., 2010; van Hell and Tokowicz,
2010). Brain complex network analysis is revealed here as a useful
approach in addressing the processing of L2 traits not present in
L1. Our results indicate that the functional organization related to
the processing of correct and mismatching morphosyntactic fea-
tures is not conformed the same in late bilinguals as it is in
monolinguals. The neural activation pattern is configured differ-
ently in highly proficient late bilinguals than in monolinguals
when a morphosyntactic language incongruence that does not
exist in the native language is presented in the second language.
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