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Individual differences are ubiquitous in human cognition, and learning Mathematics is not an 

exception. In this work, we studied the biases and strategies deployed by middle school children 

(N=490) in a computerized fraction comparison task. Whereas overall results suggest the presence 

of a strong bias for mistaking component magnitude for fraction magnitude, a clustering analysis 

reveals the coexistence of at least five distinct manners of reasoning. This implies that cognitive 

models of the learning of fractions must take into account individual variability in terms of strategy 

use. Furthermore, discovering such groups holds promise not only for research purposes, but also 

as a contribution to teaching practices because of its potential to expose common mistake patterns. 

INTRODUCTION 

An important constituent of mathematical competence is the capacity of reasoning flexibly using a 

set of basic concepts and procedures. Even basic arithmetic operations are subject to be performed 

with a variety of strategies (e.g. Ashcraft, 1990), which may be used to different extents by different 

learners. Children may use different strategies when solving repeatedly problems of the same type, 

even when one strategy is systematically more convenient than the others (e.g. Siegler & Stern, 

1998). Sometimes, deep misconceptions may be revealed by the incorrect use of some strategies, or 

by the wrong application of some other ones. Handling these misconceptions requires important 

efforts from educators, who must be able to identify and then correct them. The degree of 

variability in learners’ conceptions and strategies—and the relevance of detecting misconceptions—

grows importantly when learners have multiple representations available, as it is the case of 

learning fractions and rational numbers. Rationals may be seen as ratios, operators, quotients, or 

measures, among other possibilities (Kieren, 1976). 

A necessary step in learning fractions successfully is the ability to distinguish between the 

magnitudes of fractions themselves and that of the natural numbers that compose them. Many of the 

most common mistakes that children commit when reasoning about rational numbers involve the 

overgeneralization of facts, strategies, and procedures valid for natural numbers. For instance, when 

55% of a sample of 13-year-olds and 36% of a sample of 17-year-olds claim that 7/8 + 12/13 is 

approximately 19 or 21 (Reys, Rybolt, Bestgen, & Wyatt, 1982). This tendency to 

overgeneralization has been termed whole number bias or natural number bias (e.g. Ni & Zhou, 

2005; Van Dooren, Lehtinen, & Verschaffel, 2015). Research with children demonstrates that the 

distinction between components’ magnitudes and fraction magnitude is hard to achieve (Gómez, 

Jiménez, Bobadilla, Reyes, & Dartnell, 2014; Stafylidou & Vosniadou, 2004), and even data from 

educated adults (DeWolf & Vosniadou, 2015; Vamvakoussi, Van Dooren, & Verschaffel, 2012) as 

well as expert mathematicians (Obersteiner, Van Dooren, Van Hoof, & Verschaffel, 2013) provide 

evidence of interference between both types of magnitude. 
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To study the conflict between the magnitudes of fractions and those of the fractions’ components, 

many of these studies have used fraction comparison tasks where the concept of congruency plays a 

central role. As depicted in Figure 1, a pair of fractions is called congruent if the numerical 

magnitudes of the fraction, the numerator, and the denominator are maximized by the same fraction, 

for instance 1/4 and 2/5. Incongruent pairs, in contrast, are those in which the numerator and the 

denominator of the smaller fraction are larger, like 1/3 and 2/9. If one compares fractions by direct 

comparison of the magnitudes of the components only, then congruent items will be answered 

correctly and incongruent items incorrectly. 

 

 

Figure 1: Examples of fraction pairs representing congruent (left) and incongruent (right) 

comparison items. Thin arrows point to the largest components in each pair, and thick arrows point 

to the largest fraction. In the congruent case, all arrows point in the same direction, whereas in the 

incongruent case the thin and the thick arrows point in opposite directions. 

 

Although studies with school children (e.g. Gómez et al., 2014) have shown that indeed congruency 

may play a relevant role in shaping children’s answers in a fraction comparison task, the notion of 

congruency itself seems not to stem from the mathematics education literature. The concept might 

have been introduced by a neuroimaging study conducted by Ischebeck, Schocke, and Delazer 

(2009), grounded in the psychological tradition of studying the cognitive conflict produced when 

two sources of information clash in a decision-making task such as the classical Stroop task (when 

presented with the word red written in blue ink and asked which ink color was used, literate people 

may mistakenly respond “red” instead of “blue”). However, evidence that students’ accuracy 

patterns align with congruency is not—by itself—a demonstration that congruency is a cognitively 

or educationally relevant construct. In other words, a correlation between congruency and students’ 

performance does not imply that congruency causes some patterns of reasoning about fractions. 

Nonetheless, this alignment suggests that congruency may be closely related to some other, 

cognitively and educationally relevant, variables yet to be discovered and understood. 

A highly relevant aspect to note is that most studies addressing the role of congruency and other 

stimuli dimensions in fraction comparison have so far focused in overall group performance, that is 

to say, in the average performance across participants. This decision implicitly assumes that the 

average performance is representative of that of each participant, so that conclusions drawn from 

average values reflect the cognitive processes engaged by all participants. However, it is well 

known that this assumption might be easily violated. Variables might have a bimodal distribution, 

rendering their overall average values meaningless by themselves. Hence, only a careful 

examination of individual differences can provide strong support for cognitive and educational 

theories about children’s reasoning about fractions. In line with Clarke and Roche (2009), in this 
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article we focus on the strategies used by children to compare pairs of fractions, although with a 

quantitative, clustering-based approach. More specifically, we present the results of a clustering 

analysis conducted on the data collected by Gómez et al. (2014) to look for groups of children 

according to their strategies for comparing fractions. The outcome of this analysis will then be used 

to infer individual variability in terms of strategy use. 

METHODS 

Participants. Five hundred and two children of 5
th

, 6
th

, and 7
th

 grade classes participated in this 

study (approximate age range 10-12 years old). Children belonged to five schools of the Greater 

Santiago area in Chile. Informed consent was obtained from a parent or tutor of each child prior to 

testing. 

Fraction comparison task. The task consisted of 24 pairs of fractions to be compared, and was 

presented to children by computer. Items were equally distributed between congruent and 

incongruent. In addition, within each category half of the pairs shared a common numerator or 

denominator while in the other half they shared no common component. Each item had a time limit 

of 10 s to be answered and items not answered within this time were considered omitted, leading to 

an approximate total duration of 4 minutes. We refer the reader to Gómez et al. (2014) for a more 

detailed description of the task and the full list of items. 

Procedure. Children were tested in groups, in the computer classroom of each school. Each child 

worked individually. At least two researchers or research assistants monitored each testing session. 

Clustering analysis. We discarded twelve children who took longer than the time limit in three or 

more items. For the other 490 children, we computed percentages of correct answers for the four 

item types (congruent/incongruent, with/without common components) and used these scores to run 

a k-means clustering algorithm to group children into k groups. We tried all values of k from 2 to 10 

and selected k = 6 as the best solution, based on an index calculated using percentages of explained 

variance and average standard deviations per cluster, among other measures. 

RESULTS 

Table 1 presents the results of the clustering analysis. We found two groups whose answers are 

highly influenced by congruency, A and E. Children in the former group answered, as expected, 

most congruent items correctly and most incongruent items incorrectly, whereas the latter showed a 

less extreme pattern but in the opposite direction, with incongruent items having better scores than 

congruent ones. 

The second largest group was B, gathering children with the highest overall scores. This group, 

however, presents a drop of about 20% in performance when comparing congruent items without 

common components. A similar pattern of answers, but with a much more pronounced drop for the 

same item type, is exhibited by group D. 

Group C comprised children who had relative success in comparing fractions when these had a 

common component, but failed when these shared no common component. Finally, group F showed 

a pattern of answers below the 50% level for all item types. 
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  With a common component Without common components 

Group Size Congruent Incongruent Congruent Incongruent 

A 245 93 % 4 % 97 % 2 % 

B 84 94 % 94 % 74 % 93 % 

C 48 84 % 67 % 57 % 55 % 

D 43 89 % 94 % 18 % 96 % 

E 38 20 % 85 % 15 % 90 % 

F 32 38 % 25 % 48 % 29 % 

Table 1: Group sizes and scores for all item types. 

DISCUSSION 

The clustering analysis revealed important differences among children’s patterns of answers in the 

fraction comparison task. Importantly, these differences reflect distinct patterns of reasoning for 

comparing fractions, constituting a relevant step forward with respect to previous analyses that 

focused only in averages across all children (e.g. Gómez et al., 2014). 

The majority of children (group A, half of the sample) compared fractions guided by congruency, 

that is to say selecting as the larger fraction the one with larger components. This pattern of 

reasoning was expected, given previous evidence in children’s and adults’ data (Gómez et al., 2014; 

Obersteiner et al., 2013; Vamvakoussi et al., 2012). However, a smaller group (E, 8% of the 

sample) showed an opposite behavior, selecting as the larger fraction the one with smaller 

components. Answers from the latter group, although unexpected from the viewpoint of 

congruency, align with children’s self-reports in a previous study (Stafylidou & Vosniadou, 2004). 

Groups B and D (comprising 17% and 9% of the sample, respectively) showed similar patterns of 

scores, answering about 90% correctly for all item types except for congruent items without 

common components. Gómez et al. (2014) proposed that a tendency to select the fraction with a 

smaller denominator as larger may lead to this pattern of results. This heuristic is moot with respect 

to items where fractions share a common denominator, but given our definition of congruency, it 

answers correctly all incongruent items and incorrectly all congruent items without common 

components. Assuming that children answer items with a common denominator by resorting to an 

ad hoc strategy, scores of children in group D align closely with the proposed heuristic. Group B, 

instead, may be described as showing a mixed behavior between answering correctly all item types 

and a tendency to use the described denominator-size heuristic. An interesting question for further 

inquiry would be to examine how clearly distinguishable groups B and D are. It may be that both 

groups switch between the same pair of strategies/heuristics, only differing in the probabilities of 

activation that they assign to each of them. Alternatively, both groups may show qualitative 

differences in their conceptual understanding of fractions or fraction comparison. 

Scores for children in group C (10% of the sample) suggest that they succeed in comparing only 

fraction pairs that share a common component, and within these items they show a clear 

congruency effect. These children seem to have the basic knowledge of what fractions are, allowing 
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them to reason about items with a common component, but to lack knowledge and strategies for the 

more complex cases. Finally, group F (7% of the sample) displays a pattern of scores difficult to 

interpret without additional data. It is possible that the clustering algorithm formed this group by 

pooling together all children who did not fit neatly into the first five groups. 

A couple of the outcomes from our analysis call into question the idea that children are biased 

towards congruency, as it has been suggested based on data from previous studies. First, the 

presence of group E, where children’s answers point in the direction opposite to the one predicted 

by congruency. Second, the drops in performance exhibited by groups B and D occur specifically 

for a subset of congruent items, namely those lacking common components. These results suggest, 

at least, that a bias towards congruency is not the main driver of children’s reasoning in many cases. 

Indeed, the use of specific heuristics or strategies for comparing fractions may provide a better 

explanation for some of our observations. Children in group A may answer according to the rule 

“larger components, larger fraction”; those in group E according to “smaller components, larger 

fraction”; and those in group D according to “smaller denominator, larger fraction”. Still, 

congruency might play a considerable role in this context by explaining why group A outnumbers 

group E, or why there seems not to be an equivalent of group C with incongruent items answered 

better than congruent ones. We refer the reader to Gómez and Dartnell (2015) for another argument 

questioning the cognitive relevance of congruency for fraction comparison. Altogether, these 

findings indicate the need for a reconsideration of the relevance of congruency from the 

perspectives of both cognitive processing and mathematics education. 

ADVANTAGES AND LIMITATIONS 

In this article, we partly described the high variability exhibited by 5
th

 to 7
th

 grade children in regard 

to the biases and strategies they use to compare fractions. We note that the fraction comparison 

task, despite its simplicity and brevity, was able to show a rich variety of possible patterns of 

reasoning. The task consisted of 24 items, each of them with a time limit of 10 seconds to be 

answered. This implies that the total test duration was about four minutes. As the task was 

presented to children by computer, it was possible to test many children in parallel, simplifying data 

collection as well. 

The computerized application of the fraction comparison task, as well as the absence of pencil and 

paper for calculations and the time limitation to answer each item, contributed importantly to bring 

to light children’s basic intuitions about fractions. Indeed, in this context children had to answer 

spontaneously and without recur to written algorithms. Nonetheless, this advantage comes with a 

price: using this format of task presentation likely poses a heavier burden on students with a low 

working memory capacity. These students would probably benefit from, for instance, pencil and 

paper and being able to write down some calculations. The lack of such support might lead to 

underestimation of the conceptual understanding of fractions that these children have. A similar 

argument could be made for children with mathematics anxiety. A review by Ashcraft and Krause 

(2007) shows that persons with mathematics anxiety display lower outcomes in tasks of middle to 

high difficulty—as it is the case for fraction comparison—. Thus, a relevant issue for future 

research is to determine how are the results of fraction comparison tasks affected by presentation 

format (e.g. contrasting the format used in the present study to a standard pencil and paper test). 
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IMPLICATIONS 

In sum, we observed important variability among middle school students with respect to the biases 

and strategies that they deploy in a fraction comparison task. We stress the fact that our task was 

very short: 24 items with a time limit of 10 s for each of them, for a maximum total task duration of 

about 4 minutes. In addition, since the task was presented by computer, it can be applied to several 

students in parallel if desired. 

The possibility to discover different patterns of reasoning based on such a short task are relevant for 

research purposes and educational practice. Qualitative research in mathematics education (e.g. that 

involving guided interviews) is highly demanding in terms of the time and human resources needed 

for data collection. A method like the one described above may be used as a starting point to build 

screening tasks to obtain potential groups of children reasoning in distinct manners. Participants for 

guided interviews may then be selected by sampling all different groups, allowing researchers to 

reach minority groups with significantly less effort. Also neuroscientific research in mathematics 

education may benefit from screening participants in search of patterns of reasoning: A statistically 

significant activation in a given brain area (Ischebeck et al., 2009), or a given event-related 

potential (e.g. Barraza, Gómez, Oyarzún, & Dartnell, 2014; Zhang et al., 2012), can only be 

interpreted adequately if all experimental participants are assumed to engage similar cognitive 

processes in solving a mathematical task, which is unlikely if different groups of participants show 

distinct patterns of reasoning. 

Last but not least, the approach presented in this article may prove useful for educational practice as 

well. A brief fraction assessment like the one presented here allows the teacher to identify the 

patterns of reasoning most likely engaged by each child. This knowledge may lead to better 

identification of erroneous patterns of reasoning and their underlying misconceptions, leading in 

turn to more focused and effective pedagogical action. 
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